हिंदी

Write the Following in the Simplest Form: `Sin^-1{(Sqrt(1+X)+Sqrt(1-x))/2},0<X<1` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`

उत्तर

Let x = cos θ

Now,

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2} = sin^-1  {(sqrt(1+costheta)+sqrt(1-costheta))/2}`

`=sin^-1{(sqrt(2cos^2  theta/2)+sqrt(2sin^2  theta/2))/2}`

`=sin^-1{(cos  theta/2+sin  theta/2)/sqrt2}`

`=sin^-1{1/sqrt2sin  theta/2+1/sqrt2cos  theta/2}`

`=sin^-1{sin(theta/2+pi/4)}`

`=theta/2+pi/4`

`=(cos^-1x)/2+pi/4`

`therefore sin^-1{(sqrt(1+x)+sqrt(1-x))/2}=(cos^-1x)/2+pi/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.09 | पृष्ठ ४३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin  (17pi)/8)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the range of tan−1 x.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×