हिंदी

Evaluate: `Cos(Sec^-1x+Cosec^-1x)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1

योग

उत्तर

`cos(sec^-1x+\text(cosec)^-1x)`

`=cos(pi/2)`         `[thereforesec^-1x+\text(cosec)^-1x=pi/2]`

= 0

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 1.5 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of sin (cot−1 x).


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×