Advertisements
Advertisements
प्रश्न
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
उत्तर
`cos^-1x + cos^-1y =pi/4`
⇒ `pi/2-sin^-1x+pi/2-sin^-1y=pi/4` `[thereforecos^-1x=pi/2-sin^-1x]`
⇒ `pi-(sin^-1x+sin^-1y)=pi/4`
⇒ `sin^-1x+sin^-1y=(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
`4sin^-1x=pi-cos^-1x`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If 4 cos−1 x + sin−1 x = π, then the value of x is
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`