हिंदी

If `Cos^-1x + Cos^-1y =Pi/4,` Find the Value of `Sin^-1x+Sin^-1y` - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`

उत्तर

`cos^-1x + cos^-1y =pi/4`

⇒ `pi/2-sin^-1x+pi/2-sin^-1y=pi/4`      `[thereforecos^-1x=pi/2-sin^-1x]`

⇒ `pi-(sin^-1x+sin^-1y)=pi/4`

⇒ `sin^-1x+sin^-1y=(3pi)/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 2 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate:

`cot(tan^-1a+cot^-1a)`


`4sin^-1x=pi-cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×