Advertisements
Advertisements
प्रश्न
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
उत्तर
Given that `cos^-1 (3/5 cosx + 4/5 sin x)`
Put `3/5` = cos y
∴ `sqrt(1 - cos^2y)` = sin y
⇒ `sqrt(1 - 9/25)` = sin y
⇒ `4/5` = sin y
∴ `cos^-1 [3/5 cos x + 45 sin x]` = cos–1[cos y cos x + sin y sin x]
= cos–1 [cos (y – x)]
= y – x
= `tan^-1 4/3 - x` ......`[tan y = siny/cosy = 4/3]`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan2)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`tan{cos^-1(-7/25)}`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If 4 cos−1 x + sin−1 x = π, then the value of x is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
The period of the function f(x) = tan3x is ____________.
Find the value of `sin^-1(cos((33π)/5))`.