हिंदी

If Cos − 1 X 2 + Cos − 1 Y 3 = θ , Then 9x2 − 12xy Cos θ + 4y2 is Equal to (A) 36 (B) −36 Sin2 θ (C) 36 Sin2 θ (D) 36 Cos2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

If cos1x2+cos1y3=θ,  then 9x2 − 12xy cos θ + 4y2 is equal to

विकल्प

  • 36

  •  −36 sin2 θ

  • 36 sin2 θ

  • 36 cos2 θ

MCQ

उत्तर

(c) 36 sin2 θ

We know
cos1x+cos1y=cos1[xy1x21y2]
Now,
cos1x2+cos1y3=θ
cos1[x2y31x241y23]=θ
x2y31x241y23=cosθ
xy4x29y2=6cosθ
4x29y2=xy6cosθ
(4x2)(9y2)=x2y2+36cos2θ12xycosθ( Squaring both the sides )
364y29x2+x2y2=x2y2+36cos2θ12xycosθ
364y29x2=36cos2θ12xycosθ
9x212xycosθ+4y2=3636cos2θ
9x212xycosθ+4y2=36sin2θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 17 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


 

If tan-1(x-2x-4)+tan-1(x+2x+4)=π4 ,find the value of x

 

​Find the principal values of the following:
cos-1(-32)


​Find the principal values of the following:

cos-1(sin  4π3)


Evaluate the following:

cos-1{cos 13π6}


Evaluate the following:

cos-1(cos3)


Evaluate the following:

tan-1(tan π3)


Evaluate the following:

cosec-1(cosec π4)


Write the following in the simplest form:

tan-1{1+x2-1x},x0


Write the following in the simplest form:

sin-1{1+x+1-x2},0<x<1


Evaluate the following:

sin(sin-1 725)

 


Evaluate the following:

sec(sin-1 1213)


Prove the following result-

tan-1 6316=sin-1 513+cos-1 35


Evaluate: sin{cos-1(-35)+cot-1(-512)}


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =π12> 0


sin-1 6365=sin-1 513+cos-1 35


Solve the following:

sin-1x+sin-1 2x=π3


Evaluate the following:

sin(2tan-1 23)+cos(tan-13)


Prove that:

2sin-1 35=tan-1 247


2tan-1(12)+tan-1(17)=tan-1(3117)


If sin-1 2a1+a2-cos-1 1-b21+b2=tan-1 2x1-x2, then prove that x=a-b1+ab


Prove that

sin{tan-1 1-x22x+cos-1 1-x22x}=1


If x < 0, then write the value of cos−1 (1-x21+x2) in terms of tan−1 x.


Write the value of tan1x + tan−1 (1x)for x > 0.


Write the value of sin−1

(sin(600°)).

 

 


Write the value of tan1{tan(15π4)}


Find the value of 2sec12+sin1(12)


If tan1(1+x21x21+x2+1x2)  = α, then x2 =




If sin−1 − cos−1 x = π6 , then x = 


 If u=cot1tanθtan1tanθ then ,tan(π4u2)=


 If cos1x3+cos1y2=θ2, then 4x212xycosθ2+9y2=


If cos1x>sin1x, then


The value of sin (14sin1638) is

 


cot(π42cot13)= 

 


If > 1, then 2tan1x+sin1(2x1+x2) is equal to

 


Prove that : tan1(1+x2+1x21+x21x2)=π4+12cos1x2;1<x<1.


If tan1(11+1.2)+tan1(11+2.3)+...+tan1(11+n.(n+1))=tan1θ , then find the value of θ.


The equation sin-1 x – cos-1 x = cos-1 (32) has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.