Advertisements
Advertisements
प्रश्न
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
उत्तर
Put \[x^2 = \cos2\theta\], we have
\[\tan^{- 1} \left( \frac{\sqrt{1 + \cos2\theta} + \sqrt{1 - \cos2\theta}}{\sqrt{1 + \cos2\theta} - \sqrt{1 - \cos2\theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{\sqrt{2c {os}^2 \theta} + \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{cos\theta + \sin\theta}{cos\theta - \sin\theta} \right)\]
\[ = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]
\[= \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]
\[ = \frac{\pi}{4} + \theta \left[ \because - 1 < x < 1 \Rightarrow 0 < x^2 < 1 \Rightarrow 0 < 2\theta < \frac{\pi}{2} \Rightarrow 0 < \theta < \frac{\pi}{4} \right]\]
\[ = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 \left[ \because x^2 = \cos2\theta \Rightarrow 2\theta = \cos^{- 1} x^2 \right]\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
`sin^-1(sin (7pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`tan{cos^-1(-7/25)}`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If sin−1 x − cos−1 x = `pi/6` , then x =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`