हिंदी

The Value of Tan { Cos − 1 1 5 √ 2 − Sin − 1 4 √ 17 } is (A) √ 29 3 (B) 29 3 (C) √ 3 29 (D) 3 29 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 

विकल्प

  • `sqrt29/3`

  • `29/3`

  • `sqrt3/29`

  • `3/29`

MCQ

उत्तर

(d) `3/29`

\[\text{ Let }, \cos^{- 1} \frac{1}{5\sqrt{2}} = y \text{ and } \sin^{- 1} \frac{4}{\sqrt{17}} = z\]
\[\therefore \cos{y} = \frac{1}{5\sqrt{2}} \Rightarrow \sin{y} = \frac{7}{5\sqrt{2}} \Rightarrow \tan{y} = 7\]
\[\sin{z} = \frac{4}{\sqrt{17}} \Rightarrow \cos{z} = \frac{1}{\sqrt{17}} \Rightarrow \tan{z} = 4\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}{1 + \tan{y} \tan{z}}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]
\[\therefore \tan\left( \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right) = \tan\left( y - z \right)\]
\[ = \frac{\tan{y} - \tan{z}}1 + \tan{y} \tan{z}\]
\[ = \frac{7 - 4}{1 + 7 \times 4}\]
\[ = \frac{3}{29}\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 2 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×