हिंदी

Write the Value of Tan ( 2 Tan − 1 1 5 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]

उत्तर

\[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right) = \tan\left[ \tan^{- 1} \frac{2 \times \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right]\]
\[ = \tan\left( \tan^{- 1} \frac{\frac{2}{5}}{\frac{24}{25}} \right)\]
\[ = \tan\left( \tan^{- 1} \frac{5}{12} \right)\]
\[ = \frac{5}{12}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 41 | पृष्ठ ११८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin  pi/6)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×