हिंदी

`2tan^-1 1/5+Tan^-1 1/8=Tan^-1 4/7` - Mathematics

Advertisements
Advertisements

प्रश्न

`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`

उत्तर

LHS = `2tan^-1  1/5+tan^-1  1/8`

`=tan^-1{(2xx1/5)/(1-(1/5)^2)}+tan^-1  1/8`     `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(2/5)/(24/25)}+tan^-1  1/8`

`=tan^-1  5/12+tan^-1  1/8`

`=tan^-1((5/12+1/8)/(1-5/12xx1/8))`       `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`

`=tan^-1((13/24)/(91/96))`

`=tan^-1  4/7`= RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.07 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the equation for x:sin1x+sin1(1x)=cos1x


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`tan{cos^-1(-7/25)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1)(3x-1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×