हिंदी

`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3` - Mathematics

Advertisements
Advertisements

प्रश्न

`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`

उत्तर

`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`

LHS = `(9pi)/8-9/4sin^-1  1/3`

`=9/4(pi/2-sin^-1  1/3)`

`=9/4(cos^-1  1/3)`

`=9/4(sin^-1sqrt(1-1/9))`

`=9/4(sin^-1  (2sqrt2)/3)=` RHS


shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.12 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 2.3 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of sin (cot−1 x).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the principal value of `sin^-1(-1/2)`


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×