हिंदी

Prove the Following Result: `Sin^-1 12/13+Cos^-1 4/5+Tan^-1 63/16=Pi` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`

उत्तर

LHS = `sin^-1  12/13+cos^-1  4/5+tan^-1  63/16`

`=tan^-1  (12/13)/sqrt(1-144/169)+tan^-1  sqrt(1-16/25)/(4/5)+tan^-1  63/16`     `[becausesin^-1x=tan^-1  x/sqrt(1-x^2)   and   cos^-1x=tan^-1   sqrt(1-x^2)/x]`

`=tan^-1  (12/13)/(5/13)+tan^-1  (3/5)/(4/5)+tan^-1  63/16`

`=tan^-1  12/5+tabn^-1  3/4+tan^-1  63/16`

`=pi+tan^-1((12/5+3/4)/(1-12/5xx3/4))+tan^-1  63/16`       `[because tan^-1x+tan^-1y=pi+tan^-1((x+y)/(1-xy))]`

`=pi+tan^-1((63/20)/(-16/20))+tan^-1  63/16`

`=pi+tan^-1  (-63)/16+tan^-1  63/16`

`=pi-tan^-1  63/16+tan^-1  63/16`
= π = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 1.2 | पृष्ठ ८२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If tan−1 3 + tan−1 x = tan−1 8, then x =


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1)(3x-1)`.


Find the domain of `sec^(-1) x-tan^(-1)x`


tanx is periodic with period ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×