Advertisements
Advertisements
प्रश्न
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
उत्तर
LHS = `sin^-1 12/13+cos^-1 4/5+tan^-1 63/16`
`=tan^-1 (12/13)/sqrt(1-144/169)+tan^-1 sqrt(1-16/25)/(4/5)+tan^-1 63/16` `[becausesin^-1x=tan^-1 x/sqrt(1-x^2) and cos^-1x=tan^-1 sqrt(1-x^2)/x]`
`=tan^-1 (12/13)/(5/13)+tan^-1 (3/5)/(4/5)+tan^-1 63/16`
`=tan^-1 12/5+tabn^-1 3/4+tan^-1 63/16`
`=pi+tan^-1((12/5+3/4)/(1-12/5xx3/4))+tan^-1 63/16` `[because tan^-1x+tan^-1y=pi+tan^-1((x+y)/(1-xy))]`
`=pi+tan^-1((63/20)/(-16/20))+tan^-1 63/16`
`=pi+tan^-1 (-63)/16+tan^-1 63/16`
`=pi-tan^-1 63/16+tan^-1 63/16`
= π = RHS
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If tan−1 3 + tan−1 x = tan−1 8, then x =
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the domain of `sec^(-1) x-tan^(-1)x`
tanx is periodic with period ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.