हिंदी

Let F (X) = E Cos − 1 { Sin ( X + π 3 } . Then, F (8π/9) = (A) E5π/18 (B) E13π/18 (C) E−2π/18 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 

विकल्प

  • e5π/18

  •  e13π/18

  • e−2π/18

  • none of these

MCQ

उत्तर

(b) e13π/18

Given: \[f\left( x \right) = e^{\cos^{- 1}} \left\{ \sin\left( x + \frac{\pi}{3} \right) \right\}\]
Then,

\[f\left( \frac{8\pi}{9} \right) = e^{\cos^{- 1}} \left\{ \sin\left( \frac{8\pi}{9} + \frac{\pi}{3} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \sin\left( \frac{11\pi}{9} \right) \right\} \]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{\pi}{2} + \frac{13\pi}{18} \right) \right\} \left[ \because \cos\left( \frac{\pi}{2} + \theta \right) = \sin\theta \right]\]
\[ = e^{\cos^{- 1}} \left\{ \cos\left( \frac{13\pi}{18} \right) \right\} \]
\[ = e^\frac{13\pi}{18}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 15 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of cos−1 (cos 1540°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×