हिंदी

If Cos − 1 X a + Cos − 1 Y B = α , T H E N X 2 a 2 − 2 X Y a B Cos α + Y 2 B 2 = (A) Sin2 α (B) Cos2 α (C) Tan2 α (D) Cot2 α - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]

विकल्प

  • sin2 α

  • cos2 α

  • tan2 α

  • cot2 α

MCQ

उत्तर

(a) sin2 α
We know that
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{a}\frac{y}{b} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} \right) = \alpha\]
\[ \Rightarrow \frac{xy}{ab} - \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \cos\alpha\]
\[ \Rightarrow \sqrt{1 - \frac{x^2}{a^2}}\sqrt{1 - \frac{y^2}{b^2}} = \frac{xy}{ab} - \cos\alpha\]
\[ \Rightarrow \left( 1 - \frac{x^2}{a^2} \right)\left( 1 - \frac{y^2}{b^2} \right) = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha \left[\text{ Squaring both the sides }\right]\]
\[ \Rightarrow 1 - \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{x^2}{a^2}\frac{y^2}{b^2} = \frac{x^2}{a^2}\frac{y^2}{b^2} + \cos^2 \alpha - \frac{2xy}{ab}\cos\alpha\]
\[ \Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2xy}{ab}\cos\alpha = 1 - \cos^2 \alpha = \sin^2 \alpha\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 4 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


`sin^-1(sin4)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Write the range of tan−1 x.


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 (cos 6).


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×