Advertisements
Advertisements
प्रश्न
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
विकल्प
x = 1, y = 2
x = 2, y = 1
x = 3, y = 2
x = −2, y = −1
उत्तर
(a) x = 1, y = 2
\[\text{We have}, \]
\[ \tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\]
\[\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} \left[ \frac{\sqrt{1 - \left( \frac{y}{\sqrt{1 + y^2}} \right)^2}}{\frac{y}{\sqrt{1 + y^2}}} \right] = \tan^{- 1} \left[ \frac{\frac{3}{\sqrt{10}}}{\sqrt{1 - \left( \frac{3}{\sqrt{10}} \right)^2}} \right]\]
\[\]
\[ \Rightarrow \tan^{- 1} x + \tan^{- 1} \left( \frac{1}{y} \right) = \tan^{- 1} \left( 3 \right)\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + \frac{1}{y}}{1 - x \times \frac{1}{y}} \right) = \tan^{- 1} \left( 3 \right)\]
\[ \Rightarrow \frac{xy + 1}{y - x} = 3\]
\[ \Rightarrow 3y - 3x = xy + 1\]
\[ \Rightarrow 3x + xy = 3y - 1\]
\[ \Rightarrow x\left( 3 + y \right) = 3y - 1\]
\[ \Rightarrow x = \frac{3y - 1}{3 + y}\]
\[For, y = 1 \Rightarrow x = \frac{1}{2}\]
\[For, y = 2 \Rightarrow x = 1\]
\[For, y = 3 \Rightarrow x = \frac{4}{3}\]
\[For, y = 4 \Rightarrow x = \frac{11}{7}\]
\[For, y = 1 \Rightarrow x = \frac{7}{3} \text{ and so on }. . . . . . \]
\[\text{ Therefore, only integral solutions are } : \]
\[x = 1\text{ and }y = 2\]
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin (5pi)/6)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin(sin^-1 1/5+cos^-1x)=1`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the range of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`