मराठी

The positive integral solution of the equation tan − 1 x + cos − 1 y √ 1 + y 2 = sin − 1 3 √ 10 is (a) x = 1, y = 2 (b) x = 2, y = 1 (c) x = 3, y = 2 (d) x = −2, y = −1 - Mathematics

Advertisements
Advertisements

प्रश्न

The positive integral solution of the equation
tan1x+cos1y1+y2=sin1310 is 

पर्याय

  •  x = 1, y = 2

  •  x = 2, y = 1

  •  x = 3, y = 2

  • x = −2, y = −1

MCQ

उत्तर

(a) x = 1, y = 2
We have,
tan1x+cos1y1+y2=sin1310

tan1x+tan1[1(y1+y2)2y1+y2]=tan1[3101(310)2]

tan1x+tan1(1y)=tan1(3)
tan1(x+1y1x×1y)=tan1(3)
xy+1yx=3
3y3x=xy+1
3x+xy=3y1
x(3+y)=3y1
x=3y13+y
For,y=1x=12
For,y=2x=1
For,y=3x=43
For,y=4x=117
For,y=1x=73 and so on ......
 Therefore, only integral solutions are :
x=1 and y=2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 5 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

​Find the principal values of the following:
cos-1(-32)


sin-1(sin 7π6)


sin-1(sin3)


sin-1(sin4)


sin-1(sin12)


Evaluate the following:

cos-1{cos(-π4)}


Evaluate the following:

cos-1(cos12)


Evaluate the following:

tan-1(tan 6π7)


Evaluate the following:

sec-1(sec 2π3)


Evaluate the following:

sec-1(sec 25π6)


Evaluate the following:

cosec-1(cosec 11π6)


Evaluate the following:

sin(tan-1 247)


Evaluate:

cos(tan-1 34)


Evaluate:

cot(tan-1a+cot-1a)


Evaluate:

cos(sec-1x+cosec-1x),|x|≥1


Solve the following equation for x:

tan-1(x-2x-4)+tan-1(x+2x+4)=π4


Solve the following equation for x:

tan-1 x-2x-1+tan-1 x+2x+1=π4


Solve the equation cos-1 ax-cos-1 bx=cos-1 1b-cos-1 1a


sin-1 45+2tan-1 13=π2


2tan-1 15+tan-1 18=tan-1 47


Prove that

tan-1(1-x22x)+cot-1(1-x22x)=π2


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


Solve the following equation for x:

tan-1(x-2x-1)+tan-1(x+2x+1)=π4


Evaluate sin

(12cos145)


Write the value of cos−1 (tan3π4)


Write the value of cos (2sin112)


If tan−1 x + tan−1 y = π4,  then write the value of x + y + xy.


If tan1(3)+cot1x=π2, find x.


If sin1(13)+cos1x=π2, then find x.

 


Write the value of sec1(12)


Wnte the value of the expression tan(sin1x+cos1x2), when x=32


If cos(tan1x+cot13)=0 , find the value of x.

 

Find the value of tan1(tan9π8)


The value of tan {cos1152sin1417} is

 


 If cos1x3+cos1y2=θ2, then 4x212xycosθ2+9y2=


If sin1(2a1a2)+cos1(1a21+a2)=tan1(2x1x2), where a,x(0,1) , then, the value of x is

 


The value of  sin(2(tan10.75)) is equal to

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Write the value of cos1(12)+2sin1(12) .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.