मराठी

Write the Value of Cos − 1 ( − 1 2 ) + 2 Sin − 1 ( 1 2 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .

उत्तर

For any x ∈ [−1, 1], cos−1x represents an angle in [0, \[\pi]\] whose cosine is x.

∴ \[\cos^{- 1} \left( - \frac{1}{2} \right)\] =any angle in [0, \[\pi\]] whose cosine is \[- \frac{1}{2}\] .

\[\Rightarrow \cos^{- 1} \left( - \frac{1}{2} \right) = \frac{2\pi}{3}\]

Similarly,

\[\sin^{- 1} \left( \frac{1}{2} \right)\] = an angle in \[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] whose sine is \[\frac{1}{2}\] . 

\[\Rightarrow \sin^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{6}\]

∴ \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] =

\[\frac{2\pi}{3} + 2\left( \frac{\pi}{6} \right) = \frac{4\pi + 2\pi}{6} = \pi\]

Hence,

\[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right) = \pi\] .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin2)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`sec{cot^-1(-5/12)}`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of sin (cot−1 x).


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×