Advertisements
Advertisements
प्रश्न
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
उत्तर
For any x ∈ [−1, 1], cos−1x represents an angle in [0, \[\pi]\] whose cosine is x.
∴ \[\cos^{- 1} \left( - \frac{1}{2} \right)\] =any angle in [0, \[\pi\]] whose cosine is \[- \frac{1}{2}\] .
\[\Rightarrow \cos^{- 1} \left( - \frac{1}{2} \right) = \frac{2\pi}{3}\]
Similarly,
\[\sin^{- 1} \left( \frac{1}{2} \right)\] = an angle in \[\left[ - \frac{\pi}{2}, \frac{\pi}{2} \right]\] whose sine is \[\frac{1}{2}\] .
\[\Rightarrow \sin^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{6}\]
∴ \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] =
\[\frac{2\pi}{3} + 2\left( \frac{\pi}{6} \right) = \frac{4\pi + 2\pi}{6} = \pi\]
Hence,
\[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right) = \pi\] .
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin2)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`sec{cot^-1(-5/12)}`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin (cot−1 x).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`