Advertisements
Advertisements
प्रश्न
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
उत्तर
`sin{tan^-1 ((1-x^2)/(2x))+cos^-1 ((1-x^2)/(1+x^2))}=1`
LHS = `sin{tan^-1 ((1-x^2)/(2x))+cos^-1 ((1-x^2)/(1+x^2))}`
`=sin{sin^-1(((1-x^2)/(2x))/sqrt(1+(1-x^2)/(2x)))+cos^-1((1-x^2)/(1+x^2))}` `[becausetan^-1x=sin^-1 x/sqrt(1+x^2)]`
`=sin{sin^-1((1-x^2)/(1+x))+cos^1((1-x^2)/(1+x^2))}`
`=sin{pi/2}` `[becausesin^-1x+cos^-1x=pi/2]`
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 (cos 6).
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
tanx is periodic with period ____________.