मराठी

Prove that `Sin{Tan^-1 (1-x^2)/(2x)+Cos^-1 (1-x^2)/(2x)}=1` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`

उत्तर

`sin{tan^-1  ((1-x^2)/(2x))+cos^-1 ((1-x^2)/(1+x^2))}=1`

LHS = `sin{tan^-1  ((1-x^2)/(2x))+cos^-1  ((1-x^2)/(1+x^2))}`

`=sin{sin^-1(((1-x^2)/(2x))/sqrt(1+(1-x^2)/(2x)))+cos^-1((1-x^2)/(1+x^2))}`    `[becausetan^-1x=sin^-1  x/sqrt(1+x^2)]`

`=sin{sin^-1((1-x^2)/(1+x))+cos^1((1-x^2)/(1+x^2))}`

`=sin{pi/2}`      `[becausesin^-1x+cos^-1x=pi/2]`

 = 1 = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 4.2 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`sin(sin^-1  1/5+cos^-1x)=1`


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 (cos 6).


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×