मराठी

`5tan^-1x+3cot^-1x=2x` - Mathematics

Advertisements
Advertisements

प्रश्न

`5tan^-1x+3cot^-1x=2x`

उत्तर

`5tan^-1x+3cot^-1x=2x`

⇒ `5tan^-1x+3(pi/2-tan^-1x)=2pi`     `[becausecot^-1x=pi/2-tan^-1x]`

⇒ `5tan^-1x+(3pi)/2-3tan^-1x=2pi`

⇒ `2tan^-1x=pi/2`

⇒ `tan^-1x=pi/4`

⇒ `x=tan  pi/4=1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 10 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin (cot−1 x).


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×