मराठी

Write the Following in the Simplest Form: `Tan^-1{(Sqrt(1+X^2)-1)/X},X !=0` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`

उत्तर

Let x = tan θ

Now,

`tan^-1{(sqrt(1+x^2)-1)/x}=tan^-1{(sqrt(1+tan^2theta)-1)/tantheta}`

`=tan^-1  {(sqrt(sec^2theta)-1)/tantheta}`

`=tan^-1{(sectheta-1)/tantheta}`

`=tan^-1{(1-costheta)/sintheta}`

`=tan^-1{(2sin^2  theta/2)/(2sin  theta/2cos  theta/2)}`

`=tan6-1{tan(theta/2)}`

`=theta/2`

`=(tan^-1x)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.04 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×