Advertisements
Advertisements
प्रश्न
`sin^-1{(sin - (17pi)/8)}`
उत्तर
We know
`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`
We have
`sin^-1(sin - (17pi)/8)sin^-1(-sin (17pi)/8)`
`=sin^-1{-sin(2pi+pi/8)}`
`=sin^-1(-sin pi/8)`
`=sin^-1(sin-pi/8)`
`=-pi/8`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`sin^-1x=pi/6+cos^-1x`
`tan^-1x+2cot^-1x=(2x)/3`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`