Advertisements
Advertisements
प्रश्न
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
उत्तर
Let a = `sin^-1 5/13` b = `cos^-1 3/5`
Let a = `sin^-1 5/13`
We know that
cos a = `sqrt(1 - sin^2 "a")`
`= sqrt(1 - (5/13)^2)`
`= sqrt(144/169)`
`= 12/13`
Let b = `cos^-1 3/5`
cos b = `3/5`
We know that
sin b = `sqrt(1 - cos^2 "b")`
`= sqrt(1 - (3/5)^2)`
`= sqrt(16/25)`
`= 4/5`
Now,
tan a = `(sin a)/(cos a)`
`= (5/13)/(12/13)`
`= 5/13 xx 13/12`
`= 5/12`
tan b = `(sin b)/(cos b)`
`= (4/5)/(3/5)`
`= 4/5 xx 5/3`
`= 4/3`
Now we know that
tan (a + b) = `(tan a + tan b)/(1 - tan a tan b)`
Putting tan a = `5/12` and tan b = `4/3`
tan (a + b) = `(5/12 + 4/3)/(1 - 5/12 xx 4/3)`
tan (a + b) = `((5 xx 3 + 4 xx 12)/36)/(1 - 20/36)`
= `((15 + 48)/36)/((36 - 20)/36)`
= `(63/36)/(16/36)`
= `63/36 xx 36/16`
= `63/16`
Thus, tan (a + b) = `63/16`
a + b = `tan^-1 (63/16)`
Putting values of a and b
`sin^-1 5/13 + cos^-1 3/5 = tan^-1 (63/16)`
Hence L.H.S = R.H.S
Hence Proved.
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`5tan^-1x+3cot^-1x=2x`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1) x-tan^(-1)x`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.