मराठी

Prove the following result- tan-1 6316=(sin-1 513+cos-1 35) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`

बेरीज

उत्तर

Let a = `sin^-1  5/13` b = `cos^-1  3/5`

Let a = `sin^-1  5/13`

We know that

cos a = `sqrt(1 - sin^2 "a")`

`= sqrt(1 - (5/13)^2)`

`= sqrt(144/169)`

`= 12/13`

Let b = `cos^-1  3/5`

cos b = `3/5`

We know that

sin b = `sqrt(1 - cos^2 "b")`

`= sqrt(1 - (3/5)^2)`

`= sqrt(16/25)`

`= 4/5`

Now, 

tan a = `(sin a)/(cos a)`

`= (5/13)/(12/13)`

`= 5/13 xx 13/12`

`= 5/12`

tan b = `(sin b)/(cos b)`

`= (4/5)/(3/5)`

`= 4/5 xx 5/3`

`= 4/3`

Now we know that

tan (a + b) = `(tan a + tan b)/(1 - tan a  tan b)`

Putting tan a = `5/12` and tan b = `4/3`

tan (a + b) = `(5/12 + 4/3)/(1 - 5/12 xx 4/3)`

tan (a + b) = `((5 xx 3 + 4 xx 12)/36)/(1 - 20/36)`

= `((15 + 48)/36)/((36 - 20)/36)`

= `(63/36)/(16/36)`

= `63/36 xx 36/16`

= `63/16`

Thus, tan (a + b) = `63/16`

a + b = `tan^-1 (63/16)`

Putting values of a and b

`sin^-1  5/13 + cos^-1  3/5 = tan^-1  (63/16)`

Hence L.H.S = R.H.S

Hence Proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.08 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 2.3 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`5tan^-1x+3cot^-1x=2x`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


tanx is periodic with period ____________.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×