Advertisements
Advertisements
प्रश्न
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
उत्तर
We have
\[\cos^{- 1} \left( \tan\frac{3\pi}{4} \right) = \cos^{- 1} \left\{ - \tan\left( \pi - \frac{3\pi}{4} \right) \right\} \left[ \because \tan\left( \pi - x \right) = - \tan{x} \right]\]
\[ = \cos^{- 1} \left\{ \tan\left( - \frac{\pi}{4} \right) \right\}\]
\[ = \cos^{- 1} \left\{ - \tan\left( \frac{\pi}{4} \right) \right\}\]
\[ = \cos^{- 1} \left( - 1 \right)\]
\[ = \cos^{- 1} \left( cos\pi \right) \left[ \because cos\pi = - 1 \right]\]
\[ = \pi\]
∴ \[\cos^{- 1} \left( \tan\frac{3\pi}{4} \right) = \pi\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If tan−1 (cot θ) = 2 θ, then θ =
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`