Advertisements
Advertisements
प्रश्न
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
उत्तर
\[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\} = \tan^{- 1} \left\{ 2\sin\left[ \cos^{- 1} 2 \left( \frac{\sqrt{3}}{2} \right)^2 - 1 \right] \right\}\]
\[ = \tan^{- 1} \left[ 2\sin\left( \cos^{- 1} \frac{1}{2} \right) \right]\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin12)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate:
`cos(tan^-1 3/4)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 2/3=1/2tan^-1 12/5`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`
Find the value of `sin^-1(cos((33π)/5))`.