Advertisements
Advertisements
प्रश्न
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
पर्याय
`(3pi)/5`
`-pi/10`
`pi/10`
`(7pi)/5`
उत्तर
(b) `-pi/10`
\[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right) = \sin^{- 1} \left\{ \cos\left( 6\pi + \frac{3\pi}{5} \right) \right\}\]
\[ = \sin^{- 1} \left\{ \cos\left( \frac{3\pi}{5} \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( \frac{\pi}{2} - \frac{3\pi}{5} \right) \right\}\]
\[ = \frac{\pi}{2} - \frac{3\pi}{5}\]
\[ = - \frac{\pi}{10}\]
\[\]
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`