मराठी

The Value of Sin − 1 ( Cos 33 π 5 ) is (A) 3 π 5 (B) − π 10 (C) π 10 (D) 7 π 5 - Mathematics

Advertisements
Advertisements

प्रश्न

The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 

पर्याय

  • `(3pi)/5`

  • `-pi/10`

  • `pi/10`

  • `(7pi)/5`

MCQ

उत्तर

(b) `-pi/10`

\[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right) = \sin^{- 1} \left\{ \cos\left( 6\pi + \frac{3\pi}{5} \right) \right\}\]
\[ = \sin^{- 1} \left\{ \cos\left( \frac{3\pi}{5} \right) \right\}\]
\[ = \sin^{- 1} \left\{ \sin\left( \frac{\pi}{2} - \frac{3\pi}{5} \right) \right\}\]
\[ = \frac{\pi}{2} - \frac{3\pi}{5}\]
\[ = - \frac{\pi}{10}\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 19 | पृष्ठ १२१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×