मराठी

Evaluate the Following: `Cot^-1{Cot ((21pi)/4)}` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`

उत्तर

We know that

cot-1 (cot θ) = θ,   (0, π)

We have

`cot^-1{cot  (21pi)/4}=cot^-1[cot(5pi+pi/4)]`

`=cot^-1(cot  pi/4)`

`=pi/4`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 6.6 | पृष्ठ ४३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin (cot−1 x).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If tan−1 (cot θ) = 2 θ, then θ =

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×