Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
उत्तर
Let `x = asintheta`
Now,
`tan^-1{x/(a+sqrt(a^2-x^2))}=tan^-1{(asintheta)/(a+sqrt(a^2-a^2cos^2theta))}`
`=tan^-1{(asintheta)/(a+asqrt(cos^2theta))}`
`=tan^-1{sintheta/(1+costheta)}`
`=tan^-1{(2sin(theta/2)cos(theta/2))/(2cos^2 theta/2)}`
`=tan^-1{tan theta/2}`
`=theta/2`
`=1/2sin^-1(x/a)`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of cos−1 (cos 6).
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Find the domain of `sec^(-1)(3x-1)`.