मराठी

​Find the Principal Values of the Following: `Cos^-1(Tan (3pi)/4)` - Mathematics

Advertisements
Advertisements

प्रश्न

​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`

उत्तर

Let `cos^-1(tan  (3pi)/4)=y`

Then, 

`cosy=tan  (3pi)/4`

We know that the range of the principal value branch is [0,pi]

thus, 

`cosy=tan  (3pi)/4=-1=cos(pi)`

`=>y=piin[0,pi]`

Hence, the principal value of `cos^-1(tan  (3pi)/4)` is  π.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.02 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 4.4 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin  pi/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos{sin^-1(-7/25)}`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×