मराठी

For the Principal Value, Evaluate of the Following: `Cos^-1 1/2+2sin^-1 (1/2)` - Mathematics

Advertisements
Advertisements

प्रश्न

For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`

उत्तर

`cos^-1(cosx)=x`

`sin^-1(sinx)=x`

`cos^-1  1/2+2sin^-1  (1/2)`

`=cos^-1(cos  pi/3)+2sin^-1(sin  pi/6)`

`=pi/3+2(pi/6)`

`=(2pi)/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.02 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 5.1 | पृष्ठ १०

संबंधित प्रश्‍न

The principal solution of `cos^-1(-1/2)` is :


The principal solution of the equation cot x=`-sqrt 3 ` is


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `cos^-1(cos  (13pi)/6)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sin[2cot^-1 ((-5)/12)]`


The principal value branch of sec–1 is ______.


One branch of cos–1 other than the principal value branch corresponds to ______.


The domain of sin–1 2x is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


The period of the function f(x) = cos4x + tan3x is ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×