मराठी

If cos(sin-1 25+cos-1x) = 0, then x is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.

पर्याय

  • `1/5`

  • `2/5`

  • 0

  • 1

MCQ
रिकाम्या जागा भरा

उत्तर

If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to `2/5`.

Explanation:

We have, `cos(sin^-1  2/5 + cos^-1x)` = 0

⇒ `sin^-1  2/5 + cos^-1x = cos^-1 0`

⇒ `sin^-1  2/5 + cos^-1x = pi/2`

⇒ `cos^-1x = pi/2 - sin^-1  2/5`

⇒ `cos^-1x = cos^-1  2/5`   .....`(because cos^-1x +sin^-1x = pi/2)`

∴ x = `2/5`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 26 | पृष्ठ ३८

संबंधित प्रश्‍न

Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`


The principal solution of the equation cot x=`-sqrt 3 ` is


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(2sin  (3pi)/4)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`cot^-1(-sqrt3)`


If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`  


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Which of the following corresponds to the principal value branch of tan–1?


The value of `sin^-1 (cos((43pi)/5))` is ______.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×