मराठी

For the Principal Value, Evaluate of the Following: `Tan^-1(-1)+Cos^-1(-1/Sqrt2)` - Mathematics

Advertisements
Advertisements

प्रश्न

For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`

उत्तर

`tan^-1(-1)+cos^-1(-1/sqrt2)`

`=tan^-1{tan(-pi/4)}+cos^-1(cos  (3pi)/4)`   `[because "Range of tan is" (-pi/2,pi/2)  ;  -pi/4 in(-pi/2,pi/2) "and range of cosine is"[0,pi]  ; (3pi)/4 in [0, pi]]`

`=-pi/4+(3pi)/4`

`=pi/2`

`therefore tan^-1(-1)+cos^-1(-1/sqrt2)=pi/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.03 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.03 | Q 2.1 | पृष्ठ १४

संबंधित प्रश्‍न

The principal solution of the equation cot x=`-sqrt 3 ` is


Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


For the principal value, evaluate of the following:

`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


Find the principal value of the following:

`tan^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

cosec-1(-2)


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the value of `tan^-1 (tan  (9pi)/8)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sec(tan^-1  y/2)`


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


The value of `sin^-1 (cos((43pi)/5))` is ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


The value of sin (2 sin–1 (.6)) is ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (tan  (2pi)/3)`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of sin (2 tan–1(0.75)) is equal to ______.


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


The value of `cot[cos^-1 (7/25)]` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The set of values of `sec^-1 (1/2)` is ______.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×