Advertisements
Advertisements
प्रश्न
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
उत्तर
`tan^-1(-1)+cos^-1(-1/sqrt2)`
`=tan^-1{tan(-pi/4)}+cos^-1(cos (3pi)/4)` `[because "Range of tan is" (-pi/2,pi/2) ; -pi/4 in(-pi/2,pi/2) "and range of cosine is"[0,pi] ; (3pi)/4 in [0, pi]]`
`=-pi/4+(3pi)/4`
`=pi/2`
`therefore tan^-1(-1)+cos^-1(-1/sqrt2)=pi/2`
APPEARS IN
संबंधित प्रश्न
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(-sqrt3/2)`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of sin (2 sin–1 (.6)) is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (tan (2pi)/3)`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The set of values of `sec^-1 (1/2)` is ______.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.