Advertisements
Advertisements
प्रश्न
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
उत्तर
We know that `(5pi)/6 ∉ (- pi/2, pi/2)` and `(13pi)/6 ∉ [0, pi]`
∴ `tan^-1 (tan (5pi)/6) + cos^1(cos (13pi)/6)`
= `tan^-1 [tan (pi - pi/6)] + cos^-1[cos(2pi + pi/6)]`
= `tan^-1[tan(- pi/6)] + cos^-1(cos pi/6)`
= `tan^-1 (tan pi/6)+ cos^-1 (cos pi/6)`
= `- tan^-1 (tan pi/6) + cos^-1(cos pi/6)` .....[∵ tan–1(– x) = – tan– 1x]
= `- pi/6 + pi/6`
= 0
Hence, `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)` = 0
APPEARS IN
संबंधित प्रश्न
The principal solution of the equation cot x=`-sqrt 3 ` is
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
Which of the following is the principal value branch of cos–1x?
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?