Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`tan^-1(1/sqrt3)`
उत्तर
Let `tan^-1(1/sqrt3) = y`
Then,
`tany=1/sqrt3`
We know that the range of the principal value branch is `(-pi/2,pi/2)`.
Thus,
`tany=1/sqrt3=tan(pi/6)`
`=>y=pi/6in (-pi/2,pi/2)`
Hence, the principal value of `tan^-1(1/sqrt3) is pi/6`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
The principal solution of the equation cot x=`-sqrt 3 ` is
Solve `3tan^(-1)x + cot^(-1) x = pi`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of cot (sin–1x) is ______.
The value of sin (2 sin–1 (.6)) is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Which of the following is the principal value branch of cos–1x?
Which of the following is the principal value branch of cosec–1x?
The domain of the function cos–1(2x – 1) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The set of values of `sec^-1 (1/2)` is ______.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?