Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`cosec^-1(-sqrt2)`
उत्तर
Let `cosec^-1(-sqrt2)=y`
Then,
`cosecy=-sqrt2`
We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}`.
Thus,
`cosecy=-sqrt2=cosec(-pi/4)`
`y=-pi/4in [-pi/2,pi/2],y!=0`
Hence, the principal value of `cosec^-1(-sqrt2) is -pi/4.`
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Prove that `sin^(-1) (3/5) + cos^(-1) (12/13) = sin^(-1) (56/65)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
The value of `sin^-1 (cos((43pi)/5))` is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.