Advertisements
Advertisements
प्रश्न
Solve `3tan^(-1)x + cot^(-1) x = pi`
उत्तर
`3tan^(-1) x + cot^(-1) x = pi`
`:. 2tan^(-1) x + tan^(-1) x + cot^(-1) = pi`
`:. 2tan^(-1) x + pi/2 = pi`
`2tan^(-1) x = pi = pi/2`
`tan^(-1) (x) = pi/2 - pi/4`
`x= tan (pi/2 - pi/4)`
x = 1
APPEARS IN
संबंधित प्रश्न
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
The principal value branch of sec–1 is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
Which of the following is the principal value branch of cosec–1x?
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The domain of the function cos–1(2x – 1) is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?