मराठी

The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.

रिकाम्या जागा भरा

उत्तर

The value of cos (sin–1x + cos–1x), |x| ≤ 1 is 0.

Explanation:

cos (sin–1x + cos–1x) = `cos  pi/2`

= 0  ......`(because sin^-1x + cos^-1x = pi/2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 44 | पृष्ठ ४०

संबंधित प्रश्‍न

Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(2)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find the value of `cos^-1(cos  (13pi)/6)`.


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


The domain of sin–1 2x is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `tan^-1 (tan  (2pi)/3)`


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The set of values of `sec^-1 (1/2)` is ______.


The period of the function f(x) = cos4x + tan3x is ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


`"sec" {"tan"^-1 (-"y"/3)}` is equal to ____________.


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×