Advertisements
Advertisements
Question
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
Solution
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is 0.
Explanation:
cos (sin–1x + cos–1x) = `cos pi/2`
= 0 ......`(because sin^-1x + cos^-1x = pi/2)`
APPEARS IN
RELATED QUESTIONS
The principal solution of `cos^-1(-1/2)` is :
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
One branch of cos–1 other than the principal value branch corresponds to ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Which of the following is the principal value branch of cosec–1x?
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The minimum value of n for which `tan^-1 "n"/pi > pi/4`, n ∈ N, is valid is 5.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.