English

Find the value of tan-1(tan 2π3) - Mathematics

Advertisements
Advertisements

Question

Find the value of `tan^-1 (tan  (2pi)/3)`

Sum

Solution

We know that `(2pi)/3 ∉ [(-pi)/2, pi/2]`

∴ `tan^-1(tan  (2pi)/3) = tan^-1[tan(pi - pi/3)]`

= `tan^-1(- tan  pi/3)`

= `- tan^-1(tan  pi/3)`  ......`[because tan^-1(- x) = - tan^-1x]`

= `- pi/3 ∈  [-pi/2, pi/2]`

Hence, `tan^-1 (tan  (2pi)/3) = (-pi)/3`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 35]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 5 | Page 35

RELATED QUESTIONS

The principal solution of `cos^-1(-1/2)` is :


Find the principal value of the following:

`sin^-1(-sqrt3/2)`


For the principal value, evaluate of the following:

`tan^-1{2sin(4cos^-1  sqrt3/2)}`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`tan^-1sqrt3-sec^-1(-2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


​Find the principal value of the following:

`cosec^-1(2cos  (2pi)/3)`


Find the principal value of the following:

`cot^-1(-1/sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


if sec-1  x = cosec-1  v. show that `1/x^2 + 1/y^2 = 1`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


The value of `sin^-1 (cos((43pi)/5))` is ______.


The domain of sin–1 2x is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


Find the value of the expression `sin(2tan^-1  1/3) + cos(tan^-1 2sqrt(2))`


The value of `cos^-1 (cos  (3pi)/2)` is equal to ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The principal value of `tan^-1 sqrt(3)` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The minimum value of n for which `tan^-1  "n"/pi > pi/4`, n ∈ N, is valid is 5.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1  "x")}]` is equal to ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the principle value of `sin^-1 (1/sqrt(2))`?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×