English

Find the value of sec(tan-1 y2) - Mathematics

Advertisements
Advertisements

Question

Find the value of `sec(tan^-1  y/2)`

Sum

Solution

Let `tan^-1  y/2` = θ

Where `theta ∈ (- pi/2, pi/2)`

So tan θ = `y/2`

Which gives sec θ = `sqrt(4 + y^2)/2`

Therefore, `sec(tan^-1  y/2)` = sec θ = `sqrt(4 + y^2)/2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Solved Examples [Page 22]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Solved Examples | Q 9 | Page 22

RELATED QUESTIONS

The principal solution of `cos^-1(-1/2)` is :


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1((sqrt3-1)/(2sqrt2))`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


Find the principal value of the following:

`tan^-1(cos  pi/2)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the value of `sin[2cot^-1 ((-5)/12)]`


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×