Advertisements
Advertisements
Question
Find the value of `sec(tan^-1 y/2)`
Solution
Let `tan^-1 y/2` = θ
Where `theta ∈ (- pi/2, pi/2)`
So tan θ = `y/2`
Which gives sec θ = `sqrt(4 + y^2)/2`
Therefore, `sec(tan^-1 y/2)` = sec θ = `sqrt(4 + y^2)/2`.
APPEARS IN
RELATED QUESTIONS
The principal solution of `cos^-1(-1/2)` is :
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.