मराठी

The principal value of the expression cos–1[cos (– 680°)] is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The principal value of the expression cos–1[cos (– 680°)] is ______.

पर्याय

  • `(2pi)/9`

  • `(-2pi)/9`

  • `(34pi)/9`

  • `pi/9`

MCQ
रिकाम्या जागा भरा

उत्तर

The principal value of the expression cos–1[cos (– 680°)] is `(2pi)/9`.

Explanation:

cos–1[cos (– 680°)] = cos–1[cos (720° – 40°)]

= cos–1[cos (– 40°)]

= cos–1[cos (40°)]

= 40°

= `(2pi)/9`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ २९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Solved Examples | Q 25 | पृष्ठ २९

संबंधित प्रश्‍न

Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)+\text{cosec}^-1(-2/sqrt3)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


Find the principal value of cos–1x, for x = `sqrt(3)/2`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Which of the following corresponds to the principal value branch of tan–1?


The principal value branch of sec–1 is ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


Find the value of `tan^-1 (tan  (5pi)/6) +cos^-1(cos  (13pi)/6)`


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the principle value of `sin^-1 (1/sqrt(2))`?


Assertion (A): Maximum value of (cos–1 x)2 is π2.

Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×