Advertisements
Advertisements
प्रश्न
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
उत्तर
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is – 1.
Explanation:
The given result is true when xy > – 1.
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
For the principal value, evaluate the following:
`tan^-1sqrt3-sec^-1(-2)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
cosec-1(-2)
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
The principal value of the expression cos–1[cos (– 680°)] is ______.
The domain of sin–1 2x is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (5pi)/6) +cos^-1(cos (13pi)/6)`
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Which of the following is the principal value branch of cos–1x?
The domain of the function cos–1(2x – 1) is ______.
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?