हिंदी

The result tan1x-tan-1y=tan-1(x-y1+xy) is true when value of xy is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.

रिक्त स्थान भरें

उत्तर

The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is – 1.

Explanation:

The given result is true when xy > – 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 47 | पृष्ठ ४०

संबंधित प्रश्न

Find the principal value of the following:

`sin^-1(-sqrt3/2)`


Find the principal value of the following:

`sin^-1((sqrt3+1)/(2sqrt2))`


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


For the principal value, evaluate of the following:

`tan^-1(-1)+cos^-1(-1/sqrt2)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


Solve for x, if:

tan (cos-1x) = `2/sqrt5`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `cos^-1(cos  (13pi)/6)`.


Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.


Find the value of `sec(tan^-1  y/2)`


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


One branch of cos–1 other than the principal value branch corresponds to ______.


The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×