हिंदी

Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.

योग

उत्तर

Let cot–1x = θ.

Then cot θ = x

or

`tan(pi/2 - theta)` = x

⇒ `tan^-1x = pi/2 - theta`

So tan(cot–1x) = tan θ

= `cot(pi/2 - theta)`

= `cot(pi/2 - cot^-1 x)`

= cot(tan–1x)

The equality is valid for all values of x since tan–1x and cot–1x are true for x ∈ R.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ २२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 8 | पृष्ठ २२

संबंधित प्रश्न

The principal solution of the equation cot x=`-sqrt 3 ` is


For the principal value, evaluate of the following:

`cos^-1  1/2+2sin^-1  (1/2)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


Find the principal value of the following:

`sec^-1(-sqrt2)`


Find the principal value of the following:

`sec^-1(2tan  (3pi)/4)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`cosec^-1(2tan  (11pi)/6)`


Find the principal value of the following:

`cot^-1(sqrt3)`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


Find the value of `cos^-1(cos  (13pi)/6)`.


Find value of tan (cos–1x) and hence evaluate `tan(cos^-1  8/17)`


Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.


The principal value of the expression cos–1[cos (– 680°)] is ______.


The value of cot (sin–1x) is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`


The domain of the function cos–1(2x – 1) is ______.


The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.


If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The principal value of `cos^-1 (- 1/2)` is ______.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?


What is the principal value of `cot^-1 ((-1)/sqrt(3))`?


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×