Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
उत्तर
Let `sec^-1(2tan (3pi)/4)=y`
Then,
`secy=2tan (3pi)/4`
We know that the range of the principal value branch is `[0,pi]-{pi/2}.`
Thus,
`secy = 2tan(3pi)/4=2xx(-1)=-2=sec((2pi)/3)`
`=>y=(2pi)/3in[0,pi]`
Hence, the principal value of `sec^-1(2tan (3pi)/4) is (2pi)/3.`
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(cos (3pi)/4)`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`tan^-1(2cos (2pi)/3)`
Find the principal value of the following:
cosec-1(-2)
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sin[2cot^-1 ((-5)/12)]`
Find the values of x which satisfy the equation sin–1x + sin–1(1 – x) = cos–1x.
Which of the following corresponds to the principal value branch of tan–1?
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The value of `sin^-1 [cos((33pi)/5)]` is ______.
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
If `5 sin theta = 3 "then", (sec theta + tan theta)/(sec theta - tan theta)` is equal to ____________.
The period of the function f(x) = cos4x + tan3x is ____________.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.