Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
उत्तर
`sin^-1(tan (5pi)/4) = sin^-1(1)=sin^-1[sin(pi/2)]=pi/2`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
For the principal value, evaluate of the following:
`cos^-1 1/2+2sin^-1 (1/2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
The principal value branch of sec–1 is ______.
The value of `sin^-1 (cos((43pi)/5))` is ______.
The principal value of the expression cos–1[cos (– 680°)] is ______.
If sin–1x + sin–1y = `pi/2`, then value of cos–1x + cos–1y is ______.
The value of `tan(cos^-1 3/5 + tan^-1 1/4)` is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
The value of tan2 (sec–12) + cot2 (cosec–13) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The value of sin (2 tan–1(0.75)) is equal to ______.
The value of the expression `2 sec^-1 2 + sin^-1 (1/2)` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`