हिंदी

​Find the Principal Value of the Following: `Cosec^-1(2/Sqrt3)` - Mathematics

Advertisements
Advertisements

प्रश्न

​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`

योग

उत्तर

Let `\text(cosec)^-1(2/sqrt3)=y`

Then,

`\text(cosec)  y=2/sqrt3`

We know that the range of the principal value branch is `[-pi/2,pi/2]-{0}`

Thus,

`\text(cosec)  y=2/sqrt3=text(cosec)(pi/3)`

`=>y=pi/3in[-pi/2,pi/2],y!=0`

Hence, the principal value of `\text(cosec)^-1(2/sqrt3)   is   pi/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.05 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.05 | Q 1.3 | पृष्ठ २१

संबंधित प्रश्न

Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`


Solve `3tan^(-1)x + cot^(-1) x = pi`


if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc 


Find the principal value of the following:

`sin^-1(cos  (2pi)/3)`


Find the principal value of the following:

`sin^-1(cos  (3pi)/4)`


For the principal value, evaluate of the following:

`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


For the principal value, evaluate the following:

`sin^-1[cos{2\text(cosec)^-1(-2)}]`


Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the value of `sin[2cot^-1 ((-5)/12)]`


The principal value branch of sec–1 is ______.


One branch of cos–1 other than the principal value branch corresponds to ______.


The value of cot (sin–1x) is ______.


The principal value of `sin^-1 ((-sqrt(3))/2)` is ______.


The value of `tan(cos^-1  3/5 + tan^-1  1/4)` is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.


If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.


The value of `cot[cos^-1 (7/25)]` is ______.


The value of `sin^-1 (sin  (3pi)/5)` is ______.


The set of values of `sec^-1 (1/2)` is ______.


The value of `cos^-1 (cos  (14pi)/3)` is ______.


The value of expression `tan((sin^-1x + cos^-1x)/2)`, when x = `sqrt(3)/2` is ______.


The value of the expression (cos–1x)2 is equal to sec2x.


The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


The period of the function f(x) = cos4x + tan3x is ____________.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


If `"tan"^-1 "x" + "tan"^-1"y + tan"^-1 "z" = pi/2, "x,y,x" > 0,` then the value of xy+yz+zx is ____________.


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×