हिंदी

If cos(sin-1 25+cos-1x) = 0, then x is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to ______.

विकल्प

  • `1/5`

  • `2/5`

  • 0

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

If `cos(sin^-1  2/5 + cos^-1x)` = 0, then x is equal to `2/5`.

Explanation:

We have, `cos(sin^-1  2/5 + cos^-1x)` = 0

⇒ `sin^-1  2/5 + cos^-1x = cos^-1 0`

⇒ `sin^-1  2/5 + cos^-1x = pi/2`

⇒ `cos^-1x = pi/2 - sin^-1  2/5`

⇒ `cos^-1x = cos^-1  2/5`   .....`(because cos^-1x +sin^-1x = pi/2)`

∴ x = `2/5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 26 | पृष्ठ ३८

संबंधित प्रश्न

Find the principal value of the following:

`sin^-1(tan  (5pi)/4)`


Find the principal value of the following:

`tan^-1(-1/sqrt3)`


For the principal value, evaluate the following:

`sin^-1(-sqrt3/2)-2sec^-1(2tan  pi/6)`


​Find the principal value of the following:

`cosec^-1(-sqrt2)`


​Find the principal value of the following:

`\text(cosec)^-1(2/sqrt3)`


For the principal value, evaluate the following:

`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`


Find the principal value of the following:

`cot^-1(tan  (3pi)/4)`


The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below

Commodity A B C D E F
Price in the year 2000 (₹) 50 x 30 70 116 20
Price in the year 2010 (₹) 60 24 80  120 28

Find the principal value of cos–1x, for x = `sqrt(3)/2`.


The principal value branch of sec–1 is ______.


The value of `sin^-1 (cos((43pi)/5))` is ______.


One branch of cos–1 other than the principal value branch corresponds to ______.


The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.


The value of sin (2 sin–1 (.6)) is ______.


The value of the expression sin [cot–1 (cos (tan–11))] is ______.


The value of tan2 (sec–12) + cot2 (cosec–13) is ______.


Find the value of `4tan^-1  1/5 - tan^-1  1/239`


Which of the following is the principal value branch of cosec–1x?


The value of `sin^-1 [cos((33pi)/5)]` is ______.


The domain of the function cos–1(2x – 1) is ______.


The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.


The principal value of `sin^-1 [cos(sin^-1  1/2)]` is `pi/3`.


The general solution of the equation `"cot"  theta - "tan"  theta = "sec"  theta` is ____________ where `(n in I).`


`2  "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.


Which of the following is the principal value branch of `"cos"^-1 "x"`


Evaluate `sin^-1 (sin  (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×