Advertisements
Advertisements
Question
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
Solution
`sin^-1(tan (5pi)/4) = sin^-1(1)=sin^-1[sin(pi/2)]=pi/2`
APPEARS IN
RELATED QUESTIONS
Solve `3tan^(-1)x + cot^(-1) x = pi`
if `tan^(-1) a + tan^(-1) b + tan^(-1) x = pi`, prove that a + b + c = abc
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of cot (sin–1x) is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
Find the value of `tan^-1 (- 1/sqrt(3)) + cot^-1(1/sqrt(3)) + tan^-1(sin((-pi)/2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
The domain of the function cos–1(2x – 1) is ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
If tan–1x + tan–1y = `(4pi)/5`, then cot–1x + cot–1y equals ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The principal value of `cos^-1 (- 1/2)` is ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The value of `cos^-1 (cos (14pi)/3)` is ______.
The value of the expression (cos–1x)2 is equal to sec2x.
The least numerical value, either positive or negative of angle θ is called principal value of the inverse trigonometric function.
If sin `("sin"^-1 1/5 + "cos"^-1 "x") = 1,` then the value of x is ____________.
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
What is the principle value of `sin^-1 (1/sqrt(2))`?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.
Evaluate `sin^-1 (sin (3π)/4) + cos^-1 (cos π) + tan^-1 (1)`.