Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`cot^-1(-sqrt3)`
उत्तर
Let `cot^-1(-sqrt3)` = y
Then,
cot y = `-sqrt3`
We know that the range of the principal value branch is (0, π)
Thus,
cot y = `-sqrt3 = cot((5pi)/6)`
`\implies` y = `(5pi)/6in(0, pi)`
Hence, the principal value of `cot^-1(-sqrt3)` is `(5pi)/6.`
APPEARS IN
संबंधित प्रश्न
The principal solution of `cos^-1(-1/2)` is :
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
The principal solution of the equation cot x=`-sqrt 3 ` is
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1((sqrt3-1)/(2sqrt2))`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
Find the principal value of the following:
`tan^-1(1/sqrt3)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
Find the principal value of the following:
`sec^-1(-sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
Find the principal value of the following:
`cot^-1(-1/sqrt3)`
if sec-1 x = cosec-1 v. show that `1/x^2 + 1/y^2 = 1`
Solve for x, if:
tan (cos-1x) = `2/sqrt5`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the value of `sec(tan^-1 y/2)`
Which of the following corresponds to the principal value branch of tan–1?
The principal value branch of sec–1 is ______.
The value of the expression sin [cot–1 (cos (tan–11))] is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Find the value of the expression `sin(2tan^-1 1/3) + cos(tan^-1 2sqrt(2))`
Find the value of `4tan^-1 1/5 - tan^-1 1/239`
Which of the following is the principal value branch of cos–1x?
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
The value of `cot[cos^-1 (7/25)]` is ______.
The principal value of `tan^-1 sqrt(3)` is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The result `tan^1x - tan^-1y = tan^-1 ((x - y)/(1 + xy))` is true when value of xy is ______.
`2 "cos"^-1 "x = sin"^-1 (2"x" sqrt(1 - "x"^2))` is true for ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`