Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`cot^-1(-sqrt3)`
उत्तर
Let `cot^-1(-sqrt3)` = y
Then,
cot y = `-sqrt3`
We know that the range of the principal value branch is (0, π)
Thus,
cot y = `-sqrt3 = cot((5pi)/6)`
`\implies` y = `(5pi)/6in(0, pi)`
Hence, the principal value of `cot^-1(-sqrt3)` is `(5pi)/6.`
APPEARS IN
संबंधित प्रश्न
The principal solution of the equation cot x=`-sqrt 3 ` is
Find the principal value of the following:
`sin^-1(cos (2pi)/3)`
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
For the principal value, evaluate of the following:
`sin^-1(-1/2)+2cos^-1(-sqrt3/2)`
For the principal value, evaluate of the following:
`sin^-1(-sqrt3/2)+cos^-1(sqrt3/2)`
Find the principal value of the following:
`tan^-1(-1/sqrt3)`
Find the principal value of the following:
`tan^-1(cos pi/2)`
For the principal value, evaluate of the following:
`tan^-1{2sin(4cos^-1 sqrt3/2)}`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
Find the principal value of the following:
`cosec^-1(-sqrt2)`
Find the principal value of the following:
`\text(cosec)^-1(2/sqrt3)`
Find the principal value of the following:
`cosec^-1(2cos (2pi)/3)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`sin^-1[cos{2\text(cosec)^-1(-2)}]`
Find the principal value of the following:
`cot^-1(sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
If `sin^-1"x" + tan^-1"x" = pi/2`, prove that `2"x"^2 + 1 = sqrt5`
Find the principal value of cos–1x, for x = `sqrt(3)/2`.
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Find the value of `sec(tan^-1 y/2)`
Find value of tan (cos–1x) and hence evaluate `tan(cos^-1 8/17)`
Find the value of `sin(2tan^-1 2/3) + cos(tan^-1 sqrt(3))`
One branch of cos–1 other than the principal value branch corresponds to ______.
Let θ = sin–1 (sin (– 600°), then value of θ is ______.
The value of sin (2 sin–1 (.6)) is ______.
Find the value of `tan^-1 (tan (2pi)/3)`
Which of the following is the principal value branch of cosec–1x?
If `cos(sin^-1 2/5 + cos^-1x)` = 0, then x is equal to ______.
The value of `sin^-1 (sin (3pi)/5)` is ______.
The set of values of `sec^-1 (1/2)` is ______.
The period of the function f(x) = cos4x + tan3x is ____________.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
What is the value of x so that the seven-digit number 8439 × 53 is divisible by 99?
Assertion (A): Maximum value of (cos–1 x)2 is π2.
Reason (R): Range of the principal value branch of cos–1 x is `[(-π)/2, π/2]`.