Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sin^-1((sqrt3+1)/(2sqrt2))`
उत्तर
`sin^-1((sqrt3+1)/(2sqrt2))` `=sin^-1(sin (5pi)/12)=(5pi)/12`
APPEARS IN
संबंधित प्रश्न
Write the principal value of `tan^(-1)+cos^(-1)(-1/2)`
Find the value of `tan^(-1) sqrt3 - cot^(-1) (-sqrt3)`
Solve `3tan^(-1)x + cot^(-1) x = pi`
Find the principal value of the following:
`sin^-1(tan (5pi)/4)`
For the principal value, evaluate of the following:
`tan^-1(-1)+cos^-1(-1/sqrt2)`
Find the principal value of the following:
`sec^-1(2)`
Find the principal value of the following:
`sec^-1(2tan (3pi)/4)`
For the principal value, evaluate the following:
`sin^-1(-sqrt3/2)-2sec^-1(2tan pi/6)`
For the principal value, evaluate the following:
`sec^-1(sqrt2)+2\text{cosec}^-1(-sqrt2)`
For the principal value, evaluate the following:
`cosec^-1(2tan (11pi)/6)`
Find the principal value of the following:
`cot^-1(-sqrt3)`
Find the principal value of the following:
`cot^-1(tan (3pi)/4)`
Show that `"sin"^-1(5/13) + "cos"^-1(3/5) = "tan"^-1(63/16)`
The index number by the method of aggregates for the year 2010, taking 2000 as the base year, was found to be 116. If sum of the prices in the year 2000 is ₹ 300, find the values of x and y in the data given below
Commodity | A | B | C | D | E | F |
Price in the year 2000 (₹) | 50 | x | 30 | 70 | 116 | 20 |
Price in the year 2010 (₹) | 60 | 24 | y | 80 | 120 | 28 |
Find the value of `cos^-1(cos (13pi)/6)`.
Find the value of `tan^-1 (tan (9pi)/8)`.
Prove that tan(cot–1x) = cot(tan–1x). State with reason whether the equality is valid for all values of x.
Find the value of `sec(tan^-1 y/2)`
Find the value of `sin[2cot^-1 ((-5)/12)]`
Which of the following corresponds to the principal value branch of tan–1?
The value of `sin^-1 (cos((43pi)/5))` is ______.
The value of cot (sin–1x) is ______.
The greatest and least values of (sin–1x)2 + (cos–1x)2 are respectively ______.
The domain of the function defined by f(x) = `sin^-1 sqrt(x- 1)` is ______.
The value of `cos^-1 (cos (3pi)/2)` is equal to ______.
If `cos(tan^-1x + cot^-1 sqrt(3))` = 0, then value of x is ______.
The value of cos (sin–1x + cos–1x), |x| ≤ 1 is ______.
The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.
The principal value of `sin^-1 [cos(sin^-1 1/2)]` is `pi/3`.
The general solution of the equation `"cot" theta - "tan" theta = "sec" theta` is ____________ where `(n in I).`
If `"tan"^-1 ("a"/"x") + "tan"^-1 ("b"/"x") = pi/2,` then x is equal to ____________.
Which of the following is the principal value branch of `"cos"^-1 "x"`
What is the principle value of `sin^-1 (1/sqrt(2))`?
What is the principal value of `cot^-1 ((-1)/sqrt(3))`?
What is the value of `tan^-1(1) cos^-1(- 1/2) + sin^-1(- 1/2)`